

CAMEROON BIOSECURITY PROJECT

Development and Institution of a National Monitoring and Control System (Framework) for Living Modified Organisms (LMOs) and Invasive Alien Species (IAS)

Quantification of the Occurrence and Abundance of Priority Invasive Species in Cameroon

This report has been produced with the support of UNEP/GEF and the Government of Cameroon via the Ministry of the Environment, Protection of Nature and sustainable Development

Under the Supervision of:

Project Component 4 Taskforce (MINRESI)

&

Biosecurity Project Coordination Unit (MINEPDED)

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	vii
ABBREVIATIONS AND ACRONYMS	ix
PREFERRED WAY TO CITE THIS PUBLICATION	xi
CONTACT DETAILS OF THOSE WHO PARTICIPATED	xii
ACKNOWLEGEMENTS	xiv
DISCLAIMER	xvi
EXECUTIVE SUMMARY	xvii
DEFINITIONS OF TERMS USED IN THE TEXT	1
PART 1: INTRODUCTION	2
1.1.Context and Justification	2
1.2.Objectives of the Study	3
1.3.Report Format	3
1.4.Invasive species and Relevance of pilot sites chosen for the Activity	4
1.4.1.Invasive Species in Cameroon	5
1.4.2.Early Concepts of Invasive Species in Cameroon	5
1.4.3.Invasive Species today in Cameroon	6
1.4.4.Everybody's Concern	6
1.4.5.Existing Information on Biological Invasions in Cameroon	7
1.4.5.1.Workshops and Seminars	8
1.5.Composition of Invasive Species in Cameroon	8
1.6.Distribution of Invasive Species in Cameroon	9
1.7. Invasive Species in Forest Ecosystems	14
1.8. Managing Invasives in Cameroon	15
1.8.1.Controlling biological invasions in Cameroon	16
1.8.2.Biosecurity Act and Biosecurity Law	16
PART 2: QUANTIFYING OCCURRENCE AND ABUNDANCE OF CASSAVA MEALYBUG IN CAM	EROON 17
2.1 Study Area	
2.1.1.Criteria for Choice	
2.1.2.Cassava Mealybug as an Invasive Species	
2.1.3.Cassava Mealybug in Cameroon	

2.2. Survey of Cassava Mealybug in the Centre Region	21
Overview	21
2.2.1. The Cassava mealybug (Phenacoccus manihoti)	21
2.2.1.1.Host Plant Selection	22
2.2.1.2.Distribution	22
2.2.1.3.Protecting the Cassava Plant	23
2.2.1.4.Host Plant Resistance	23
2.3 The Cassava Plant	24
2.3.1.Importance of Cassava in the Cameroon Economy	24
2.3.1.1.Cassava source for Food	24
2.3.1.2.Widely Cultivated	24
2.3.1.3.Industrial Importance	25
2.3.1.4.Job Opportunities	25
2.3.1.5.Social Cohesion	25
2.3.1.6.Research	25
2.3.1.7.Commercial Importance	26
2.3.2.1.Common National Control Methods	27
2.3.2.2.Chemical Control	27
2.3.2.3.Physical Control	27
2.3.2.4.Cultural Methods	27
2.3.2.5.IITA Biological Control of cassava mealybug Strategy	28
2.3.2.6.Farmers' Benefits	30
2.3.3. Method used in quantifying occurrence and spread of Cassava Mealybug	31
2.3.3.1.Criteria used for choosing divisions	32
2.3.3.2.Cassava Farm Visit Arrangements	32
2.3.3.3.Tools and Materials for Farm Visits	33
2.3.3.4.Sampling Design	33
2.3.4. Lessons from field meetings/briefings	34
2.3.5.Guiding discussions with IITA Cameroon	35
2.3.5.1.First Consultation with IITA	35
2.3.5.2.Field Experience	36
2.3.5.3.Consultation with IITA after Farm Visits	36
2.3.6.Recording Observations	38
2.3.7.Problems Identified in Controlling Cassava Mealybug	42
2.3.7.1 Ignorance	42

2.3.7.2.Farming in Isolation	42
2.3.7.3.Location of Farms	42
2.3.7.4.Farm Sanitation	42
2.3.7.5.Method of Cultivation	43
2.3.7.6.Pest Control Method	43
2.3.7.7.Planting Material	43
2.3.8.Organisations interested in control of Cassava Mealybug	
, ,	
PART 3: QUANTIFYING OCCURRENCE AND ABUNDANCE OF WATER HYACINTH	IN CAMEROON45
3.1 Study Area	45
3.2. Criteria for the Choice	46
3.2.1.Managing Cameroon's Wetlands	46
3.2.2.Important Wetland Species in Cameroon	47
3.2.3.Water Hyacinth among Biological Invasions in Cameroon	47
3.3 The Plant Water Hyacinth	47
3.3.1.Morphology	47
3.3.2.Chemical Composition	48
3.3.3.Biology	49
3.3.4.Ecology	49
3.3.5.Origin and Pathways	50
3.3.6.Distribution of Water Hyacinth in Cameroon	51
3.3.7.Occurrence in Littoral Region	51
3.3.8.Distribution of Water Hyacinth in Littoral and Wouri Basin	52
3.4.FACTORS INFLUENCING GROWTH OF WATER HYACINTH IN WOURI BASIN	55
3.4.1.Climate	55
3.4.2.Salinity	55
3.4.3.Tides	55
3.4.4.Nutrients	55
3.4.5.Garbage Disposal	55
3.4.6.Ballast Waters	56
3.5.Impact of Water Hyacinth on Communities of the Region	57
3.5.1.Social Impact	57
3.5.1.1.Hunger and Protein Deficiency	57
3.5.1.2.Health hazards	57
3.5.1.3 Hindrance to Pecreational Activities	57

	3.5.2.Economic Impacts	57
	3.5.2.1.Hindrance to water transport	57
	3.5.2.2.Problems associated with fishing	57
	3.5.2.3.Loss of Income from Tourism	58
	3.5.2.4.Clogging of Irrigation, hydro-power and water supply systems	58
	3.5.3.Environmental Impacts	58
	3.5.3.1.Potential for floods	58
	3.5.3.2.Degradation of Water Quality	58
	3.5.3.3.Siltation	58
	3.5.3.4.Reduction of Biodiversity	58
	3.5.3.5.Increased Evapotranspiration	59
3.	6.Controlling Water Hyacinth Invasion	60
	3.6.1.Occurrence in Africa	60
	3.6.2.Control Initiatives	60
	3.6.3.Lessons and Recommended Approaches	60
	3.6.4.The River Wouri Estuary	61
3.	7.Riparian Communities of the Wouri River Basin	62
	3.7.1.Controlling water hyacinth in Wouri River Basin	63
	3.7.1.1.Occurrence/ Abundance/Neglect	63
	3.7.1.2.Mastering Growth and Expansion Patterns	64
	3.7.1.3.Common Control Methods	64
	3.7.1.4.Management Authorities	65
	3.7.1.5.Abandoned Water Courses	65
	3.7.1.6.Ecological and Climatic Influences	65
	3.7.1.7.Knowing Invasive Characteristics	66
	3.7.1.8.Seasonality	66
	3.7.1.9.Environmental Hygiene	66
	3.7.1.10.Intervention Intervals	66
	3.7.2.Constraints in the Controlling Water Hyacinth	66
	3.7.2.1.Poor Understanding of the Ecology of the Wouri River Basin	66
	3.7.2.2.Inadequate Management Strategies	67
	3.7.2.3.Poor Coordination among Stakeholders	67
	3.7.2.4.Insufficient Public Awareness	67
	3.7.2.5.Insufficient Funding	68
	3.7.2.6.Inadequate Human Resource	68
	3.7.3.Uses of Water Hvacinth	68

3.7.4.Invasion Affects Economic Activities in Littoral	70
3.8.Methodology	71
3.8.1.Materials and Tools	71
3.8.2.Site Choice Criteria	71
3.8.3.Sampling Procedure	71
3.8.3.1.Assessing Location and Spread of Water Hyacinth	72
3.8.3.2.Interviews	72
3.8.3.3.Site Observations	72
3.8.4.Presentation of Findings	73
3.8.4.1.Results on Water hyacinth in Douala IV	73
3.8.4.2.Results on Water hyacinth in Douala V	74
3.8.4.3.Results on Water hyacinth in Bonalea	75
3.8.4.4.Results on Water hyacinth in all sites	76
3.8.5.Discussions	78
3.8.6.Comparative Growth Studies on Water Hyacinth	78
3.9.Information on Water Hyacinth Invasion	79
3.9.1.Summary of impacts caused by Water hyacinth invasion	80
3.9.1.1.Reduction of Biodiversity	81
3.9.1.2.Ecological Changes	81
3.9.1.3.Impact on Economic Activities	82
3.9.1.4.Environmental Changes	82
3.9.1.5.Community perception about Water hyacinth invasion	82
3.10.CONCLUSIONS	83
PART 4: NEXT STEPS	84
4.1.Biosecurity	84
4.2.Managing the Control of Cassava Mealybug	84
4.3.Managing Water Hyacinth in Cameroon	85
REFERENCES	87
ANNEXES	101

LIST OF TABLES

Table 1: First recorded invasive species in Cameroon	5
Table 2: Publications associated to invasive species in Cameroon	8
Table 3: Biological invasions in Cameroon	9
Table 4: Number of Invasive Species in each taxon in each region	9
Table 5: Invasive species in the Adamawa	10
Table 6: Invasive species in the Centre	10
Table 7: Invasive species in the East	10
Table 8: Invasive species in the Far North	11
Table 9: Invasive species in the Littoral	11
Table 10: Invasive species in the North	11
Table 11: Invasive species in the North West	12
Table 12: Invasive species in the South	12
Table 13: Invasive species in the South West	12
Table 14: Invasive species in the West	13
Table 15 summarizes the control measures commonly used in Cameroon	16
Table 16: The Centre Region – Administrative Information	18
Table 17: Organisms Associated to Cassava Damage	19
Table 18: Cassava research finding by IITA	26
Table 19: Variations within cassava growing zones in centre region	
Table 20: Observations from farm sampling	41
Table 21a: Area cultivated with cassava in divisions visited.	41
Table 21b: Organizations interested in cassava mealybug	44
Table 22: The Littoral Region – Administration:	46
Table 23: Major wetland invasive species in Cameroon	47
Table 24: Coverage of Water Hyacinth in the Wouri River Basin	53
Table 25: Actors in the use of water hyacinth in Wouri River Basin	68
Table 26: Economic activities in Littoral region	70
Table 27: Quantification of density and biomass of water hyacinth in Douala IV	74
Table 28: Quantification of density and biomass of Water Hyacinth in Douala V	75
Table 29: Quantification of density and biomass of water hyacinth in Bonalaea	76
Table 30 : Summary of quantification of density and biomass of water hyacinth in all sites	77
Table 31: Comparative studies for water hyacinth in the WRB	78
Table 32: Information collected on the management of water species	80

LIST OF FIGURES

Figure 1: Biodiversity stakeholders in invasive species management	7
Figure 2: Invasive Species in Cameroon;	9
Figure 3: Invasive species in the Adamawa	10
Figure 4: Invasive species in the Centre	10
Figure 5: Invasive species in the East	10
Figure 6: Invasive species in the Far North	11
Figure 7: Invasive species in the Littoral	11
Figure 8: Invasive species in the North	11
Figure 9: Invasive species in the North West	12
Figure 10: Invasive species in the South	12
Figure 11: Invasive species in the South West	12
Figure 12: Invasive species in the West	13
Figure 13: Distribution of Invasive species by region by taxa	13
Figure 14: Cameroon - Administrative Regions	17
Figure 15: The Centre Region - Divisions	17
Figure 17: Female of Phenacoccus manihoti (Cassava mealybug)	21
Figure 17: Phenacoccus manihoti (Cassava mealybug) on leaf of cassava	21
Figure 18: Eggs of Phenacoccus manihoti (Cassava mealybug)	22
Figure 19: Epidinocarsis lopezi, Adult natural enemy of the P manihoti (Cassava mealybug)	28
Figure 20: Introduction of the E lopezi against P. Manihoti in Africa	29
Figure 21: Illustrating quadrant sampling used	34
Figure 22: Interviewing women farmers was critical for information gathering	34
Figure 23: An infested plant root system cannot produce healthy tubers.	34
Figure 24: Examining the leaves and roots of an infested plant	35
Figure 25: The new pest is seen attacking other crops like macabo in Bokito an insect	
pest named by ITTA as the African mosaic virus	37
Figure 26: In Bokito ants living in symbiosis with Root and tuber scale (Strictococcus vaycer)	37
Figure 27: A CIG 4-hectare farm in Mbalmayo – free from all forms of attack	37
Figure 28: Nyong et Mfoumou Division – Farm visits in Akonolinga, Yeme Yeme and Mengang	38
Figure 29: Mbam et Inoubou Division Farm Visits	39
Figure 30: Nyong et Kelle Division Farm visits	39
Figure 31: Nyong et So'o Division - Farm Visits	40
Figure 32: Littoral Region – Administrative Divisions of Littoral Region	45
Figure 33: Morphology of Water hyacinth plant: (A) Slender Petioles (B) Bulbous Petioles	48
Figure 34: Chemical Structure of Water hyacinth	49

Figure 35: Distribution of Water hyacinth in Cameroon	51
Figure 36: Distribution of Water hyacinth in the River Wouri Basin	52
Figure 37: The 2017 Distribution of Water hyacinth Along Wouri River Basin	53
Figure 38: Invasion of Water Course by Water hyacinth	59
Figure 39: Small mats A & B join to form mat C.	63
Figure 40: A, B & C show progression of invasion from banks to whole water surface	64
Figure 41: The Giffle de Goliath for weeding Water hyacinth mats. The WTG in Douala regularly	
uses this appliance for mechanical control of Water hyacinth	65
Figure 42: Water Hyacinth material for carpets and compost manure	68
Figure 43: Sampling W. hyacinth using 1m² quadrants	72
Figure 44: Weighing Samples collected	72
Figure 45: Map showing Distribution of Water hyacinth in Douala IV	73
Figure 46: Map showing Distribution of Hyacinth in Douala V	74
Figure 47: Map showing Distribution of Water hyacinth in Bonalaea	75
Figure 48: Summary Map of Sampled sites	76
Figure 49: Un-explained dryness of Water hyacinth Douala V	79
Figure 50: Other plant species join Water hyacinth to invade water courses	79

ABBREVIATIONS AND ACRONYMS

ANCO Apiculture and National Conservation Organization

ARTS African Root and Tuber Scale

AVRDC Asian Vegetable Research Development Centre

BUCREP Bureau Central des Recensements et des Études de Population

CAD Cassava Anthracnose Disease
CAS Cameroon Academy of Sciences

CBB Cassava Bacterial Blight

CBP Cameroon Biosecurity Project

CABI Center for Agriculture and Biosciences International

CIAT Centre Internationale de l'Agriculture Tropicale
CIBIC Commonwealth Institute for Biological Control

CIG Common Interest Group

CIFOR International Centre for Forest Research

CMD Bacterial Mosaic Blight
CRD Capital Regional District
GSP Global Positioning Systems

ECOWAS Economic Community of West African States

FAO Food and Agriculture Organization of the United Nations

EBI Encyclopaedia Britannica Incorporation

GEF Global Environment Facility
GDP Gross Domestic Product

GISD Global Invasive Species Database
GISP Global Invasive Species Programme

GIZ German International Cooperation Agency

IAS Invasive Alien Species

IFAD International Fund for Agricultural Development
IITA International Institute of Tropical Agriculture

INS National Institute for Statistics

IUCN International Union for the Conservation of Nature

IWM Integrated Weed Management

IRAD Institute for Agricultural Research in Development

LMOs Living Modified organisms

MINADER Ministry of Agriculture and Rural Development

MINCOM Ministry of Commerce

MINEDUB Ministry of Basic Education

MINATD Ministry of Territorial Administration & Decentralization

MINEPDED Ministry of Environment, Protection of Nature and Sustainable Development

MINEPIA Ministry of Livestock Fisheries and Animal Industries

MINFOF Ministry of Forestry and Wildlife

MINRESI Ministry of Scientific Research and Innovation

MINSANTE Ministry of Health

NGO Non-Governmental Organisations

NTFPs Non Timber Forest Products

PIDMA Programme d'Investissement et de Développement des Marchés Agricoles

SODEPA Livestock Development Corporation

UNEP United Nations Environment Programme

US/EPA United States Environmental Protection Agency

WRB Wouri River Basin

WTG Watershed Task Group

WWF World Wildlife Fund for Nature

PREFERRED WAY TO CITE THIS PUBLICATION

MINEPDED (2017). Quantification of the Occurrence and Abundance of Priority Invasive Species in Cameroon. Report submitted to MINEPDED under the UNEP/GEF Cameroon Biosecurity Project: Development and Institution of a National Monitoring and Control System (Framework) for Living Modified Organisms (LMOs) and Invasive Alien Species (IAS), Yaoundé, Cameroon.

CONTACT DETAILS OF THOSE WHO PARTICIPATED

Authors

Dr. Beka Robert Germain Direction Technique, SODEPA B.P.1410, Yaoundé

Tel:+(237)677085508/698982138

E-mail:bekarobertger2004@yahoo.fr

Mr BOKWE, Augustine President, Centre for Biodiversity & Sustainable Development

Cameroon

Phone +237 677400422

Email: v cefai2002@yahoo.co.uk

Members of the Project Coordination Unit

Mr Wouamane Mbele Cameroon Biosecurity Project Coordinator Ministry of Environment, Protection of Nature and Sustainable Development Acropole, Yaoundé, Cameroon Tel: +237 699 51 31 17

Email: wouamane@yahoo.fr

Mr Declan Chongwa Ambe D. Cameroon Biosecurity Project Technical and Administrative Assistant Ministry of Environment, Protection of Nature and Sustainable Development Acropole, Yaoundé, Cameroon

Tel: +237 677 02 22 85 / 696 86 66 19 Email: declanambe@yahoo.co.uk

Mr Clouvis Johnbang Cameroon Biosecurity Project Financial and Administrative Assistant Ministry of Environment, Protection of Nature and Sustainable Development Acropole, Cameroon

Tel: +237 675 95 92 97 / 698 09 94 77 Email: clouvisjohnbang@yahoo.com

Contact details of the Project Technical Adviser

Dr John Mauremootoo InSpiral Pathways Project & Programme Planning, Implementation Monitoring and Evaluation

Phone/Text: +44 (0) 784 603 1430 Email: john@inspiralpathways.com

Skype: johnmaure

www.InSpiralPathways.com

Dr. David A. Mbah Cameroon Academy of Sciences

Tel: +237 677 83 91 41

Email: dambah@yahoo.co.uk

Members of the Component 4 Taskforce

Dr Roger Noël Iroume Mrs Priscilla Song Natang
Head Component 4 – Information & Co-Lead Component 4

Awareness – of the GEF/Government of Social Affairs Administrator Research Officer

Cameroon Biosecurity Project and Chair of N°1 –MINEPDED

Task Team Inspector General Ministerial Building No. 2

MINRESI Yaoundé, Cameroon

Yaoundé, Cameroon Tel: +237 677367449/ +237 693824906

Email: iroumerog@hotmail.fr

Dr Vitalis R.M. Chepnda Mrs Colette Edith Ekobo

Component 4 Task Team Member Component 4 Task Team Member

National Coordinator Animal Genetic Resource person

Resource Management Program Tel:+237 677604101

MINEPIA Email: ekoboce@voila.fr

Yaoundé, Cameroon

Tel:+237 699003722/ Cell:+237 679688500

Email: drchepnda@yahoo.co.uk

ACKNOWLEGEMENTS

The authors are grateful to the following persons who assisted them in accomplishing their assignment:

GENERAL PLANNING FOR INFORMATION COLLECTION

Mr. Hele Pierre the Honorable Minister of Environment, Protection of Nature and Sustainable Development for the introductory letters which enabled the consultants to be received and assisted in the Littoral and Centre Regions. Mr. Rigobert Ntep, CBP Project Coordinator; Mr. Declan Chongwa Ambe, CBP Project Technical & Administrative Assistant; Clouvis Johnbang CBP Financial & Administrative Assistant; Marthe Mendomo, Dr. Mbah David, CBP Technical Adviser; Dr Roger Noel Iroume, Head of Component 4; Mrs. Priscilla Song, Co-Lead of Component 4; Mr. Koulagna Denis, General Manager of SODEPA;

For Contacts on Water Hyacinth Invasion

Mr. SIDI Bare, Regional Delegate MINEPDED Littoral; Mr. Quanfers Serge, Regional Controller Delegation MINEPDED Littoral; Ms Mbarga Justine, Chief of Service for Conservation and Monitoring MINEPDED Littoral; Djongue Elepih Regine, Secretary, DDEPDE/Moungo; Mr. Chi Napoleon, Watershed Task Group Coordinator; Mme Dipoko Marie, Caretaker Watershed Arts Gallery: Mr Joel Mpah Dooh, Artist; Fatigang Bodele, fisherman; Njoya Jean, Nkamani Valery, Bendomen Edith Lord, Sand escavators; Atedzoe Paul and Obama Goerge -Drivers Regional Delegation of the Environment Littoral, Mr Joe Kess Director of the Baneng, *Water hyacinth* Arts Galery; Mr Sanda of SODEPA for Teledetection GSP processes and satellite imagery.

For Contacts on Cassava Mealybug Invasion

Mrs.Alice Siben Ndikontar, FAO Country Representative and CCP/CMR/O31/GEF Project: Coordinator; Atangana Flavien Nicaise of the service for fertilizers and fertilization MINADER, Dr. Bessong Willington Ojong, Mr. NANGA NANGA Samuel of IITA, Cameroon Minso Gisele Regional Delegate MINADER. For the Centre Region, Mme KANA née Benell Anne Esther Regional Delegation MINEPDED, Centre Region, Mr Atangana Sylvestre Magloire (Environmentalist) Div. Delegation MINEPDED Nyong et Mfoumou, Ze Effouda Jean Marie Div Delegation MINADER Nyong et Mfoumou, Mme Alima Chief of Post DDM. Akonolinga, Tuekam Hoctens Staff Agricultural Post DDM. Akonolinga, Goulka Daniel Chief of Post DDM. Yeme Yeme, Mohamadou Alhaji Chief of Post DDM. Zoloa, Tsam Garba Adalbert Chief of Post Ekono Silounga marie Thérèse Rural Animator YEME YEME, Mr.

Woundi Joseph Meyabene Helène Marius, all farmers; Amang Adamou Divisional Delegate MINEPDED Mbam et Inoubou; Effala Gaston Divisional Delegate MINADER Mbam et Inoubou; Yogo Bogiong Chief of Post DDM Bokito; Bodiombo André, farmer Kedia village; Eveng Joseph Desire Divisional Delegate MINADER Nyong et Kelle; Amoiugou Susane Nathalie neé Mpord Divisional Delegate MINEPDED Nyong et Kelle; John Li Agbe Stephane Chef Section des Appuis aux projets et investissements; Nbee Bikim Jacque staff Divisional Delegate MINADER Nyong et Kelle Matip Matip Farmer Muanda Village Ezeka; Bisso Etienne Daniel Nguibazzal Village; Lipenda Leontine Farmer; Ayissi Bernabe Pierre Divisional Delegate MINEPDED Nyong et So'o; Libala Jean Bosco Sub Divisional Delegate Mbalmayo; Adidjatu Musa, Farmer.

DISCLAIMER

The opinions expressed in this publication do not necessarily reflect those of UNEP or MINEPDED. UNEP or MINEPDED are not responsible for the information provided in this document. These organisations do not make any warranty of any kind, expressed or implied, including, but not limited to, warranties of accuracy, reliability, completeness, or content of such information in this document.

Under no circumstances shall UNEP or MINEPDED be responsible for any loss, damage or liability or expense incurred or suffered which is claimed to have resulted from the use of or reliance upon the information contained in this document, including, but not limited to, any fault error, mistake, omission or defect. Under no circumstances shall these organisations be liable for any direct, indirect, incidental, special, punitive or consequential damages.

EXECUTIVE SUMMARY

This study was undertaken to establish the framework of biological invasions in Cameroon. Two studies have been conducted on the quantification, occurrence and abundance of the Cassava mealybug (Phenacoccus manihoti) in the Centre Region and the Water hyacinth (Eichhornia crassipes) in the Littoral Region of Cameroon. The studies were carried out in October 2017 simultaneously toward the end of the rainy season when the two species are in their high level of performance in their respective localities. Studies on the invasiveness of the Cassava mealybug were complemented by IITA's biological control strategy in which the natural enemy (Epidinocarsis lopezi) was introduced in all of sub-saharan Africa as a control agent against P. manihoti For the Water hyacinth in the Littoral, local control methods are being used to contain the weed. The control methods being used do not yield good results because of slow and inadequate means. Satellite images taken in October 2017 show that about 25.52% of its surface area of Douala IV is covered by Water hyacinth, while in Douala V, 1.6% of its surface area and in Bonalea 2.0% of its surface area comparative growth studies have also shown that between 2010 and 2017, the mass of Water hyacinth has increased quantitatively. In spite of the economic values attached to it by some communities, the weed remains a fast invader.

Until recently, little was known about invasive species in Cameroon and their impact on the country's economy. This poor knowledge about invasives was demonstrated in a workshop on invasives when the Cameroon Delegation reported Chromonaela odorata as the only species considered to be invasive in Cameroon (Nyasse et al., 2004). This declaration however enabled Cameroon gain the recommendation of setting up a programme to prioritize the monitoring of major and minor invasive species in the national territory, Improvement of knowledge on invasive species continued to gain importance among biodiversity stakeholders. In 2012, in a Training of Trainers Workshop on the Introduction to the Integrated Management of Biological Invasions using the Principles of the Ecosystem Approach, 31 species were identified as invasives (MINEPDED, 2012). More surveys through the CBP activities on biological invasions increased the number to 164 species grouped into 4 taxa - Crop pests and diseases, Plants, Animal and human diseases, and Aquatic life and animals (MINEPDED, 2016). Still within the programme design of Component 4 of the CBP, there is emphases on "Awareness" aimed at sensitizing the Cameroonian public on the proper management of invasive species. More information is being added to the existing knowledge particularly with the participatory efforts of the public and private sectors on biodiversity management programmes.

Depending on the zone of activity, invasive species can affect the livelihood, economy and the environment of a community. The *Water hyacinth* is seen to have badly affected the lives of the riparian communities of the Wouri River Basin in the Littoral Region while the Cassava Mealybug has continued to reduce cassava yields in cassava growing regions of Cameroon. Working in Mbalmayo using different clones of 5 cassava genotypes, Ngeve discovered that the Cassava root mealybug (Strictococccus vayssierei) seriously threatened the production and utilization of cassava in Cameroon, (Ngeve, 2003). Tifu (2012) showed how incomegenerating activities fishing, sand extraction, river transport and even agriculture were seriously affected by the rapid invasion of Water hyacinth in the WRB. He highlighted the distortion of the livelihood of over 900.000 inhabitants within the riparian communities and the extinction of some villages1. In the assessment study of the socio-economic impact of Water hyacinth invasion within the riparian communities of the Wouri River Basin, Kenfack et al., (2004) found that the people's income from fishing had dropped by 75%, while income from sand extraction dropped by 25% and that from water transport by 75%. Although no disease was reported, unconventional breeding programmes involving some species, during the 2012 quantification survey of invasive species.

Work on invasives in Cameroon has progressed from identification, quantification to management, control systems and procedures. Within the structures of the CBP, coordination has been considered such that several government ministries and other stakeholders participate in project activities to get properly informed, involved and be fully participative. Moreover, the CBP activities are divided in 4 components and each component is headed by key stakeholders' ministries. Such a structure enhances collaboration and information sharing, research and capacity building.

Problems associated with invasive species in Cameroon include poor knowledge of invasives, consensus in the meaning of Biosecurity,² lack of baseline data, cost and availability of inputs and climate change. Invasive species need to be identified, managed and controlled. Overcoming these problems will require understanding the ecosystems and their services. This implies the use of information for policy makers and economic planning. Today, *Water hyacinth* is being used as a raw material for the manufacture of house-hold material, paper, manure and animal feed. The Water Task Group is using the initiative and is now planning to construct a processing unit for the River Wouri Riparian Communities (WTG, 2011).

¹The village of Mousoko with an initial population of 400 people was left with no inhabitants while Bongo village is close to extinction with only 3 inhabitants at the time of survey 2012.

²There is need to have an appropriate term in the French language which distinguishes Biosafety and Biosecurity. In the French language, both terms mean the same

The Cassava mealybug has continuously affected cassava yields in many cassava producing areas in Cameroon. Cassava today serves as an export product to several countries in the Central African sub-region and even abroad. The need to improve on its production therefore requires precautionary measures to reduce disease agents like the mealybug and associated factors which affect it production.

There is need to apply current management techniques and appropriate control measures to enable the problems of invasives to be adequately addressed in Cameroon.

The approach used in this study is to situate the information so far gathered towards the management of invasive species in Cameroon. Within the scope of the CBP and research so far conducted, much has been done already although efforts are still ongoing. This activity is designed:

- ✓ To quantify, list, analyse baseline data of a common water invasive plant to illustrate the nature of aquatic invasives and the Cassava mealybug to show the degree of damage by crop pests on Cassava production.
- ✓ The visit of 2 pilot sites chosen for the study, Littoral Region for the Water hyacinth
 and Centre Region for the Cassava root mealybug will enable the authors make an
 up-to-date appraisal of the damage caused by invaders. Victims of the invasion
 (farmers and fishermen) river transporters will be interviewed to assess the extent
 and progress and effectiveness control measures.

In both cases, sampling was done using the methodology described in the report and .make a comparative analysis using existing information will enable the study team draw conclusions and make useful recommendations.

The conclusions and next steps are meant to sensitize the public especially the rural masses on the need to master the various impacts caused by biological invasions and adopt sound management and control techniques. The need has been expressed for biodiversity stakeholders to cooperate with policy-makers and resource managers on the control of biological invasions and protection of our environment and its components. This should continue to be the concern of everybody.

THE MINISTER OF ENVIRONMENT, PROTECTION OF NATURE AND SUSTAINABLE DEVELOPMENT

DEFINITIONS OF TERMS USED IN THE TEXT

Abundance: Extremely plentiful, over sufficient quantity of supply

Crop Pests: Any animal, plant or insect that causes harm to crops

Frequency: The rate at which something occurs over a particular period of time or in a given

sample

Control Area: Defined or demarcated space meant for a special purpose

Control Method for invasive species: Method used to reduce minimise or eradicate the occurrence or impact caused by an invasive species

Estuary: The tidal mouth of a large river, where the tides meet the stream

Evapotranspiration: The transfer of water from land to the atmosphere by evaporation from the soil and other surfaces and by transpiration from plants

Impact by an invasive species: The effect of an invasive species to the environment, human life, economy biodiversity in general.

Microecosystem: Exists in locations precisely defined by critical environmental factors within small or tiny spaces. Such factors may include temperature, pH, chemical milieu, nutrient supply, presence of symbionts or solid substrate, gaseous atmosphere (aerobic or anaerobic) etc.

Natural Enemy: An organism that kills decreases the reproductive potential of or otherwise reduces the numbers of another organism. Natural enemies that limit pests are key components of integrated pest management programmes.

Occurrence: Something that happens or takes place

Phyto-remediation: Direct use of living plants for in-situor in place, removal, degradation or containment of contaminant in soil, sludges, sediments, surface water and ground water.

Proliferation: A rapid increase in the amount of something, the action of becoming larger or more extensive

River Basin: The portion of land drained by a river and its tributaries. It encompasses all the land surface dissected and drained by many streams and creeks that flow downhill into one another.

Riparian Communities: Human settlements whose activities, and livelihood depend on the water mass around them.

Siltation: A process by which water becomes dirty as a result of fine mineral particles in the water

Study Area: An area limited or recommended for a specific study

Symbiosis: Any type of close and long term biological interaction between two different biological organisms be it mutualisation, communalistic or parasitic.